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SLE~rnary 
The curing theory for polycondensation reaction of A~-BbCr type is 

investigated in detail to give gelation condition explicitly. Furthermore, 
a recursion formula for evaluating the polymer moments is obtained. This 
formula is suitable for both pre-gel and post-gel. 
i. Introduction 

As is well known, the curing theory for polycondensation reactions 
has been initiated by Flory-Stockmayer( i, 2 ). Miller and Macosko( 3,4 ) have 
proposed a recursion method in dealing with the problem of post-gel prop- 
erties of network polymers. It is known that in the theory of branching 
processes, the probability generating function with differentiation tech- 
nique proposed by Gordon(5,6) can be used for evaluation of polymer mo- 
ments. In the previous papers(7,8), a reasonable way to approach A~and 
Ael...Aas-Bbl...B~t polycondensation reactions has been proposed by the 
present authors. In this paper, the polycondensation reaction of AQ-BbCc 
type is investigated involving monomer Ae with a- functionalities in re- 
acting with monemer BbCc with b- and c- functionalities. The sol fraction 
for post-gel is discussed in detail to approach gelation condition by 
taking Stockmayer's Ae-Bb result as a criterion(2). By means of Lagrange 
expansion of sol fraction, the equilibrium number fraction distribution is 
deduced. Furthermore, by applying a direct differentiation technique to 
the equilibrium distribution, a recursion formula for polymer moments is 
obtained. This formula is suitable for both pre-gel and post-gel in eval- 
uating the polymer moments explicitly. 
2. Sol Fraction, Gelation Condition and Distribution 

In this section, we shall make use of the explicit form of sol frac- 
tion to approach both gelation condition and equilibrium number fraction 
distribution. 

Let us consider a systems involvingmonemer A~ with a- functionalities 
and monomer BbCc which contains two species B and C associated with b- 
functionalities and c- functionalities, respectively. The system charac- 
terized by Ae-BbCc means that the chemical reaction takes place only be- 
tween A and B, or A and C. In order to make our discussion easier, scrne 
notations are prior introduced such that, p~: the total equilibrium frac- 
tional conversion of species A; pb(Pc): the total equilibrium fractional 
conversion of species B(C) associated with BbCc; pi: the sol equilibrium 
fractional conversion of species A; p~(p~): the sol equilibrium fractional 
conversion of species B(C) associated with BbCc; Sa: the sol fraction of 
A~; Sbc: the sol fraction of BbCo. 

During the course of polycondensation, the number of reacted func- 
tional groups of type A must be equal to the sum of the number of reacted 
functional groups of type B and type C to give 
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Pa : (b/a)rPb+(c/a)rPc' r = ~c/Na (i) 

where Nm and Nbc are the nt~nber of monomers with respect to Aa and BbCc. 
Under the assumptions of equireactivity and no intramolecular reac- 

tion occurred in the sol, it is not difficult to find, from probability 
considerations, that the nine quantities p~, p~, Pb' Pb' Pc' P~' S~, S~r 
and r are subject to the five independent relations by writing 

S a : l-Pa+ -~--rPb~bc-- + -~-rPcObc (2) l-Pb l-Pc 

I-PA < b l-p~ c l-pA )a-i 
S - -  = l-Pa+ --~-rPbSbc l_Pb l_Pc a l-Pa + a rPe~c-- (3) 

/ 1-p~ kb i p, ~c 

She : <l-Pb+PbSa l_-~a )<l-Pc+PcSa l_--~a a ) (4) 

i p{ / i p a 91 l-p, ,c 

i p c / 1-p~ 9/ 1-p a ~c-i 
She 1-po : t l-Pb+PbSa tfPc+PcSa 

Relations (1)-(6) signify that only three of the nine quantities mentioned 
above are independent. 

Now let us turn our attention to the gelation condition. With the aid 
of Eqs. (2) and (3), the sol fraction S can be expressed as a 

s a = 1_pa . (7) 

Applying Eqs. ( 3 ) - ( 7 ) to Eq. ( 2 ) together with Eq. ( 1 ) yields 

pa [l_sl/a+ c ( ( ) t• J - = a a 1-Pc (1-Pb+PbS~a-1)/a'b'" 

~(a-1)/a,b-l, l_Pc+PeS(aa-1)/a) c)] [i_ ( l_Pb + 
- ( i-pb+Pbba ) t 

_(a-l)/a,b-1, - /a)c (8) 
+Pbba J t l_Pe+PcS(a i) ]-1 

lfnen Sa=l, p~ in Eq.(8) becomes indeterminate, i.e. 0/0, and then, appli- 
cation of the L'Hospital's rule leads us directly to the result 

[(a-l)/a][b(b-1)rp{ + e(e-1)rPc + 2bcrPbPe] = 1 . (9) 

This relation is the gelation condition of polycondensation for type 
A~-BbCc. If the monomer of type BbCc reduced to the monomer of type B 8, 
i.e. c=0, the gelation condition in Eq. (9) turns into the form 

(a-1)(b-1)pap b = 1 . 

This is the well known gelation condition, due to Stockmayer(2), of the 
polycondensation reaction of type A~-B 5 . 

By making use of Lagrange expansion(9) of sol fraction S 

S =~, .~,(m + l)Pml(i,i') (i0) 
m,l,i,i, 
i+i ' =m+l- 1 

with 
S = XaSa+~cSbc , Xa = Na/(Na+Nbc )' ~c = ~c/(Na+Nbc) (ii) 
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we can find, with the aid of Se and Sbc in Eqs.(2)-(6), that the equilib- 
titan number fraction distribution Pml(i,i') takes the form 

. cl-i ' am-i-i ' �9 , i i i'(l_Pb)bl-i(l_Pc) Pm] ( i, i' ) = XaC ~( ~, I' ~r %Pc (l-P a ) (12) 

with 

(+)i a(am-m) ! (m-l) ! 
Cml (i,i') = m!(am-m-l+l)!(bl-i)!(cl-i')[ ' 

(bl-j) ! (cl-l+j)! (+)j (13) 
~, j ! (l-j) ! )i-j ) ! (i'-l+j) ' 
3 

Note that the expansion formula of sol fraction S in EO. (10) is just the 
first moment M!, i.e. S=M~ . It is worth while to point out, due to Stock- 
mayer(2), that the distribution Pml(i,i') in Eq.(12) is defined into the 
post-gel region, where it becomes an improper distribution with total mass 
equal to S, the sol fraction. This implies that the later expressions for 
the kth moment M K expressed in terms of Pm[(i,i' ) hold only for sol. For 
brevity, we only state without proof that when the monomer of type BbCc 
reduces to the monomer of type B 5, i.e. c=0, the distribution in Eq.(12) 
can reduce to the well known Stockmayer distribution of the polyconden- 
sat!on reaction of t~e A~-B5 (2). 
3. The Polymer Moments 

In this section, we shall deal with the rectncsion formula of polymer 
moments by means of a direct differentiation technique. This formula is 
suitable for both pre-gel and post-gel in evaluating the polymer moments 
explicitly. 

By use of the equilibrium number fraction distribution Pml(i,i') in 
Eq. (12), the kth polymer moments M K are defined as 

=~,~, (m + l)kPml(i,i'), k : 0, i, 2 .... (14) 
m,l,i,i' 
i+i ' =m+l- 1 

In section 2, we have mentioned that in the nine quantities pa, p', Pb' 
P~'' Pc' Pc', Sa, Sbc and r, only three quantities are independent. Let us 
choose ps, Pc, and r as independent partial differentiation variables to 
differentiate the both sides of Eq. (14). As a direct result, three alge- 
braic equations can be obtained. By solving the algebraic equations, a 
recurs!on formula of polymer moments involving M k and MK+I can be deduced 

1 ~ , ~ ~ ~ 
~+i - D~ <~k + F[Pb(• + Pc(I-Pc)~--~--c ] + Ir-~---) (15) 

k = 0, i, 2 .... 
where 

D ~ = 1 (16 

D = [(a-l)/a][b(b-l)rp~ + c(c-l)rPc + 2bcrPbPc] (17 

E = (I/a)Xa[a + b(b-l)rp~ + c(c-l)rPc + 2aPa + 2bCrPbPc ] + 

+ (i/a)~c[a + (a-l)brp{ + (a-l)crPc ] (18 

F = 1 + (a-l)Pa (19) 

I = (l-Pa)(bPb+CPc) + brp~ + CrPc - aPa . (20) 

The recurs!on formula in Eq. (15) is suitable for both pre-gel and post-gel 
in evaluating the polymer moments explicitly. ~en the zeroth moment Mo 

~ Xa(l-aPa) + ~c , for pre-gel(D~D ~ ) 
Mo : (21) 

LXaSa(l-aPa) + ~eSbc , for post-gel(D>iD ~ ) 
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is taken as the starting point for recursion, one can find that the right 
hand side of recursion formula produces a factor D~ in the numerator, it 
cancels the same factor D~ in the denominator to eliminate the diver- 
gence of Mj for D=D ~ to give 

~ , for pre-gel(D~<m ~ ) 
M 1 : (22) 

, for post-gel(D~_-D ~ ) 
Furthermore, from the first moment MI, we can obtain M2, by means of 
consecutive recursion 

~ W2/(D~ , for pre-gel(D~m ~ 
M 2 : (23) 

[U2/(D-D~ , for post-gel(Dm~D ~ ) 
where 

w 2 = E (24) 

%s a %Sbc 
U2 =- [ES + IXa~c(Sbc-Sa) + F( ~(l-Pb)(Xa~-~b + Xbc ~)Pb ) + 

+ P c ( l - P c ) ( X a o P c  + Xbc) )Pc  ) + I r (X + Xbc 

For brevity, the explicit expressions of partial differentiations ~Sa/bZ, 
~Sbc/%z, z = Pb, Pc, r in Eq.(25) are omitted here. 

From the expression of M 1 in Eq. (23) which is taken as the starting 
point, one can approach, by repeated application of the recursion formula 
(15), a general expression of the kth moment ~ for k>12 

~ Wk/(D~ 2k-3, for pre-gel(m~D ~ ) 
= (26) 

LUk/(D_D o )2k-3, for post-gel(m~m ~ ) 

where W k and U k are subject to the same recursion formula 

bLk_ 1 
nk = (2k-5}JLk + (D~ ELk-1 + F[Pb(I-Pb)~T + 

-  Lk-1 
+ Pc(I-Pc) bp---~----] + ~]r / (27) 

with 
J = [(a-l)/a]! FPb(l-Pb)[2rb(b-l)Pb + 2rbcp c] + FPc(l-Pc)[2rc(c-l)Pc + 

+2rbcPb ] Ir[b(b-l)p~ + c(c-l)Pc + 2bcPbPc] ) (28) 

Note that L k is used to denote either W k for pre-gel or Uk for post-gel. 
It is obvious that the expression for M~ in Eq. (26) diverges for k~ 2 when 
D=D ~ , and the gelation condition is deduced immediately 

D - D ~ = 0. (29) 

This expression is in accordance with the form in Eq. (9) deduced from sol 
fraction in section 2. 

By the sane way as we have done in the previous papers in treating 
the polycondensation reactions ( 7,8 ), the scaling study ( i0,11 ) can proceed 
without difficulty to reach the same generalized scaling law. 
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